A deep-learning search for technosignatures from 820 nearby stars

A deep-learning search for technosignatures from 820 nearby stars

Cocconi, G. & Morrison, P. In search of interstellar communication. Nature 184, 844–846 (1959).

Article ADS Google Scholar

Tarter, J. The Search for Extraterrestrial Intelligence (SETI). Annu. Rev. Astron. Astrophy. 39, 511–548 (2001).

Article ADS Google Scholar

Enriquez, JE et al. The breakthrough Listen search for intelligent life: 1.1–1.9 GHz observations of 692 nearby stars. Astrophy. J. 849, 104 (2017).

Article ADS Google Scholar

Price, DC et al. The breakthrough Listen search for intelligent life: broadband digital instrumentation for the CSIRO Parkes 64-m telescope. Publ. Astron. Soc. Aust. 35, E041 (2018).

Price, DC et al. The breakthrough Listening search for intelligent life: observations of 1327 nearby stars over 1.10–3.45 GHz. Astron. J. 159, 86 (2020).

Article ADS Google Scholar

Price, DC et al. Expanded capability of the Breakthrough Listen Parkes data logger for observations with the UWL receiver. Res. Notes AAS 5, 114 (2021).

Article ADS Google Scholar

Enriquez, E. & Price, D. turboSETI: Python-based SETI search algorithm. Astrophysics Source Code Library ascl:1906.006 (2019).

Harp, GR et al. Machine vision and deep learning for classification of radio SETI signals. Preprint at https://arxiv.org/abs/1902.02426 (2019).

Zhang, Z.-S. et al. First SETI observations with China’s Five Hundred Meter Aperture Spherical Radio Telescope (FAST). Astrophy. J. 891, 174 (2020).

Article ADS Google Scholar

Pinchuk, P. & Margot, J.-L. A machine learning-based direction-of-origin filter for the identification of radio frequency interference in the search for techno-signatures. Astron. J. 163, 76 (2022).

Czech, D., Mishra, A. & Inggs, M. A CNN and LSTM-based approach to the classification of transient radio frequency interference. Astron. Calculate. 25, 52–57 (2018).

Article ADS Google Scholar

Zhang, YG, Hyun Won, K., Son, SW, Siemion, A. & Croft, S. Self-supervised anomaly detection for narrowband seti. In 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP) 1114–1118 (IEEE, 2018).

Brzycki, B. et al. Narrowband signal localization for SETI on noisy synthetic spectrogram data. Publ. Astron. Soc. Pac. 132, 114501 (2020).

Article ADS Google Scholar

Higgins, I. et al. β-UAE: Learning basic visual concepts with a limited variation framework. In International Conference on Learning Representations (ICLR, 2017).

Kingma, DP & Welling, M. Auto-encoding variational Bayes. In 2nd International Conference on Learning Representations (ICLR, 2014); http://arxiv.org/abs/1312.6114v10.8/25

Czech, D. et al. The Breakthrough Listening Search for Intelligent Life: MeerKAT Target Selection. Publ. Astron. Soc. Pac. 133, 064502 (2021).

Article ADS Google Scholar

Hickish, J. et al. Commensal, multi-user observations with an Ethernet-based Jansky Very Large Array. Bull. Am. Astron. Soc. 51, 269 (2019).

Siemion, A. et al. Searching for extraterrestrial intelligence with the square kilometer array. In Proceedings of Advancing Astrophysics with the Square Kilometer Array—PoS(AASKA14) (Sissa Medialab, 2015).

LeCun, Y., Haffner, P., Bottou, L. & Bengio, Y. in Shape, contour and clustering in computer vision: lecture notes in computer science (eds Forsyth, DA et al.) 319–345 (Springer, 1999) ); https://doi.org/10.1007/3-540-46805-6_19

Snoek, J., Larochelle, H. & Adams, RP Practical Bayesian optimization of machine learning algorithms. In Advances in Neural Information Processing Systems 25 (NIPS, 2012).

Abadi, M. et al. TensorFlow: large-scale machine learning on heterogeneous systems (TensorFlow, 2015); https://www.tensorflow.org/

Chollet, F. et al. Keras (Keras, 2015); https://keras.io

Mitchell, TM The need for biases in learning generalizations. Tech. Rep., Rutgers University (1980).

Breiman, L. Random forests. Machine Learning 45, 5–32 (2001).

Article MATH Google Scholar

Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Wet. Methods 17, 261–272 (2020).

Article Google Scholar

LeCun, Y. et al. Backpropagation applied to handwritten zip code recognition. Neural computing. 1, 541–551 (1989).

Article Google Scholar

Cristianini, N. & Ricci, E. in Encyclopedia of Algorithms (ed, Kao, M.-Y.) 928–932 (Springer, 2008); https://doi.org/10.1007/978-0-387-30162-4_415

Lebofsky, M. et al. The Breakthrough Listening Search for Intelligent Life: Public Data, Formats, Reduction and Archiving. Publ. Astron. Soc. Pac. 131, 124505 (2019).

Article ADS Google Scholar

Price, D., Enriquez, J., Chen, Y. & Siebert, M. Blimpy: Breakthrough Listener I/O Methods for Python. J. Open Source Software. 4, 1554 (2019).

Article ADS Google Scholar

Lam, SK, Pitrou, A. & Seibert, S. Numba: an LLVM-based Python JIT compiler. In Proc. Second Workshop on the LLVM Compiler Infrastructure in HPC, LLVM ’15 1–6 (Association for Computing Machinery, 2015); https://doi.org/10.1145/2833157.2833162

Sochat, V. Singularity compose: orchestration for singularity instances. J. Open Source Software. 4, 1578 (2019).

Article ADS Google Scholar

Siemion, APV et al. A 1.1–1.9 GHz SETI survey of the Kepler field. I. A search for narrowband emission from selected targets. Astrophy. J. 767, 94 (2013).

Article ADS Google Scholar

Perryman, MAC et al. The Hipparcos Catalogue. Astron. Astrophy. 500, 501–504 (1997).

ADS Google Scholar

Leave a Reply

Your email address will not be published. Required fields are marked *